... collection1
A previous version is published as technical report 97-1, ACPC - Austrian Center for Parallel Computation, University of Vienna, Austria, 1997.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... $LCG(2^{35}-31,5^5 = 3125, 0, 1)$2
A similar generator Mgen() $=LCG(2^{26},5^5,0,1)$, used for shuffling purposes, is implemented in the simulation software C++SIM. Note that Mgen() shows satisfying spectral test results.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... $LCG(10^8, 31415821, 1, 0)$3
This LCG corresponds to the function Uniform() implemented in the simulation software C++SIM.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...MATLAB,Cle95a4
The manual [172] wrongly states $a = 7^7$ (no primitive root modulo $2^{31}-1$!) as multiplier.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... SUPER-DUPER5
Sometimes this LCG itself is called Super-Duper [74,75].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... CDC6
Further generators implemented on CDC computers are BCSLIB (see Section [*]) and $LCG(2^{47}, 84000335758957,0,1)$ [122,124,125].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... SIMULA)7
See the Sections [*] and [*].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...Dem90a,PK89 8
The latter authors initialize the parallel streams via the additive term of the LCG which is in a certain sense equivalent to a modular shifting of the sequences [53,132]. Related concepts applied to prime LCGs have recently been published by Mascagni [170].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... below9
Similar results have also been obtained for different prime LCGs from Section [*].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.